吃什么变什么-营养就在你的基因

NUTRITION IS IN YOUR GENES!

 

 

 

营养在你的基因里!


营养基因组学(
Nutrigenomics)研究的是食物如何影响我们的基因,以及遗传差异如何影响我们对食物的反应方式。
基因组是DNA的完整集合,在这里你可以找到建立健康的指令。DNA在生命周期中是固定的,但表观基因组仍然具有灵活性。


营养对我们的DNA有“表观遗传”效应。换句话说,营养是我们改变遗传健康历史和逆转疾病统计数据的主要方式之一。

 


一种饮食并不适合我们所有人,而人口研究与饮食建议总是矛盾的原因在于我们都是不同的。遗传学和生物化学帮助我们发现我们是如何不同的,我们可以做什么来克服潜在的疾病易感性,通过理解表观遗传学通过它应用到我们的饮食,生活方式和你的环境。


当你听到DNA这个词时,你会想到什么?你的第一个想法可能是祖先。DNA是你的蓝图,你从哪里来,你是如何被设计的。也许你已经有一段时间没听过脱氧核糖核酸(DNA)这个词了,但我们会告诉你,脱氧核糖核酸有比你的家族更多的东西。


基因是由23对染色体组成的DNA片段
来自你的父母。DNA为蛋白质编码,被称为细胞的“主力”,负责维持生命所需的所有功能。
酶是蛋白质,许多酶需要营养辅助因子来确保这些马的运动速度不会太慢或太快。


人类基因组中大约有20,000 - 25,000个基因。
每个人都有相同的一组基因,但每个人的基因都有几个不同的字母(称为等位基因,把它们看作是连接梯子的水平片段,就像DNA链)。这些基因的变化被称为“SNPs”或单核苷酸多态性和基因变异。这些基因变异的差异有助于决定你的营养状况


基于酶功能的需求和敏感性。
 


单核苷酸多态性已经被遗传了数百次
由于你祖先的地理位置以及你的饮食、环境和生活方式的表观遗传变化,成千上万的世代。单核苷酸多态性指示酶的功能和方向
由维生素、矿物质、氨基酸和化合物组成
他们的工作是让你保持健康。它们的功能受到影响
通过缺乏,毒性,压力,药物和毒素。利用膳食辅助因素优化酶功能可能有帮助
降低炎症,平衡荷尔蒙,改善精神
健康,优化消化,提高运动表现,
降低患病的几率。
 
表观遗传学是理解如何加强你的基因组的核心
“表观基因组”是一个描述各种化合物的术语
这可以告诉你的基因组如何通过连接它来运作(甚至是关闭基因),并且表观基因组在你的一生中保持灵活(不像你的
DNA是固定的。这些灵活的表观遗传信号来自你
压力水平,饮食,环境,锻炼,人际关系和目标感。
所有这些因素决定了某些遗传易感性被表达的概率,然而,如果我们知道重点在哪里,我们可以降低这些
概率。

 


营养基因组学是研究饮食如何与你的基因相互作用以及如何
个体遗传差异会影响你对维生素的反应,
我们吃的食物中的矿物质和化合物。我们相信基因不是
你的命运;它们是你的蓝图。一旦你学会了如何阅读蓝图
在设计有缺陷的地方进行表观遗传改进,
身体素质会变得更健康,更有弹性;我们如何生活
甚至影响多个后代的健康。

 

营养遗传学和营养基因组学
营养遗传学和营养基因组学研究我们的遗传结构如何影响对营养的反应和营养如何影响基因的表达。我们特别感兴趣的是了解基因与脂肪酸(尤其是多不饱和脂肪酸)之间的相互作用,多不饱和脂肪酸是一种与许多人类疾病有关的主要膳食营养物质。我们正在使用脂质学和遗传学或蛋白质组学的方法来绘制动物模型或各种疾病患者组织中脂质谱与基因表达的关系,目的是识别治疗干预后正常生物过程、致病过程或药理学反应的脂质生物标志物。

 

 

NUTRITION IS IN YOUR GENES!

 

Nutrigenomics is the study of how foods affect our genes, and how genetic differences affect the way we respond to food.

 

 

The genome is the complete set of DNA, and where you find the instructions to build health. The DNA remains fixed for life, but the epigenome remains flexible.

Nutrition has an “epigenetic” effect on our DNA. In other words, nutrition is one of the major ways we can change the destiny of our genetic healthy history and reverse disease statistics.

The reason that one diet cannot suit all of us and that population studies are continually contradictory with dietary advice is because we are all different. Genetics and biochemistry help us discover how we are different, and what we can do to potentially overcome disease susceptibilities through the understanding of epigenetics by applying it to our diet, lifestyle, and your environment.

 

 

When you hear the word DNA, what comes to mind? Your first thought may be ancestry. DNA is your blueprint for where you have come from and how you are designed. It may have been a while since you heard the word deoxyribonucleic acid (DNA), but we will show you that there is much more to DNA than your family line.

Genes are segments of DNA that are organized by 23 pairs of chromosomes

from your mother and father. DNA encodes for proteins, known as the “workhorses” of the cell are responsible for all the functions necessary for life.

Enzymes are proteins, and many enzymes require nutritional co-factors to make sure these horses are not moving too slow or too fast.

 

People have approximately 20,000 – 25,000 genes in their genome.

Everyone has the same set of genes, but each one can vary by a few letters (called alleles think of them as the horizontal segments that connect ladder like strands of DNA) between people. Changes in these genes are referred to as “SNPs” or single nucleotide polymorphisms and gene variants. Differences in these gene variants help determine your nutritional

requirements and sensitivities based on enzyme function.

 

SNPs have been inherited over many hundreds of

thousands of generations due to the geography of your ancestors and epigenetic changes in your diet, environment, and lifestyle. SNP’s instruct enzyme function and are directed

by vitamins, minerals, amino acids, and compounds to do

their job of keeping you healthy. Their function is affected

by deficiency, toxicity, stress, drugs, and toxins. Optimizing enzyme function with the dietary co-factors may help

lower inflammation, balance hormones, improve mental

health, optimize digestion, increase athletic performance,

and decrease the probability of disease.

 

Epigenetics is at the heart of understanding how to strengthen your genome.

The “epigenome” is a term that describes a wide variety of chemical compounds

that can tell your genome how to function by attaching to it (even turning genes on and off), and the epigenome remains flexible throughout your life (unlike your

DNA, which remains fixed). These flexible epigenetic signals come from your

stress levels, diet, environment, exercise, relationships and a sense of purpose.

All of these factors determine the probability of certain hereditary susceptibilities being expressed, however, if we know where to focus, we can lower these

probabilities.

 

Nutrigenomics is the study of how diet interacts with your genes and how

individual genetic differences can affect the way you respond to vitamins,

minerals, and compounds in the foods we eat. We believe that genes are not

your destiny; they are your blueprint. Once you learn how to read the blueprint

and make epigenetic improvements where there are weaknesses in the design,

the foundation becomes healthier and more resilient; how we live can

even influence the health of multiple future generations.

 



Nutrigenetics and Nutrigenomics
Nutrigenetics and nutrigenomics study how our genetic constitution affects the response to nutrients and how nutrients affect the expression of genes. We are interested particularly in understanding the interactions between genes and fatty acids (especially polyunsaturated fatty acids), a major dietary nutrient linked to many human diseases. We are utilizing methods of lipidomics and genetics or proteomics to map the relationship between lipid profile and gene expression in tissues from animal models or patients with various diseases, aiming to identify lipid biomarkers of normal biological processes, pathogenic processes or pharmacologic responses to a therapeutic intervention.

Selected Publications:

Hudert C, Weylandt KH, Wang J, Lu Y, Song H, Dignass A, Serhan CN, Kang JX. Fat-1 transgenic mice are protected from experimental colitis. Proc. Natl. Acad. Sci. USA 2006;103(30):11276-11281.
Xia SH, Wang J, Lu Y, Song H, Serhan CN and Kang JX. The growth of melanoma is reduced in Fat-1 transgenic mice: Impact of n-6/n-3 essential fatty acids.Proc Natl Acad Sci USA.2006;103:12499-12504.

 

https://nutritiongenome.com/what-is-nutrigenomics/

http://www.llmt.org/research_nutrigenetics_and_nutrigenomics.htm