山东大学用纳米光敏剂加近红外线照射结合的光动力疗法成功清除肿瘤体

A Near-Infrared Triggered Nanophotosensitizer Inducing Domino Effect on Mitochondrial Reactive Oxygen Species Burst for Cancer Therapy

一种近红外触发的纳米光敏剂诱发了对线粒体活性氧的多米诺效应。

Zhengze Yu, Qiaoqiao Sun, Wei Pan, Na Li*, and Bo Tang*。化学工程与材料科学学院,山东大学化学影像功能化探头协同创新中心,分子与纳米探针重点实验室,教育部,山东省重点实验室清洁生产精细化工,山东师范大学,济南250014,PR中国。ACS Nano, 2015, 9 (11), pp 11064-11074。DOI:10.1021 / acsnano.5b04501出版日期(网页):2015年10月12日。版权©2015美国化学学会

光动力疗法(PDT)是一种行之有效的癌症治疗方法,当光照射到光敏剂时局部杀死癌细胞。

然而,传统的PDT常常受到光敏剂产生的极短的寿命和极有限的活性氧(ROS)扩散距离的限制,以及可见光激活的穿透深度。

​在此,我们开发了一种近红外(NIR)的纳米光敏剂,它是基于线粒体靶向氧化钛二氧化钛的纳米粒子,用于对抗癌症的PDT。

在NIR激光照射下,纳米光敏剂可以产生线粒体内的ROS,从而引起ROS的多米诺效应。过度产生的ROS在线粒体中积累,导致线粒体崩溃和不可逆的细胞凋亡。共聚焦荧光成像表明,在活细胞中可以实现ROS的线粒体靶向和实时成像。体内肿瘤的完全清除证实了纳米光敏剂的良好治疗效果。

 

参考文献:

A Near-Infrared Triggered Nanophotosensitizer Inducing Domino Effect on Mitochondrial Reactive Oxygen Species Burst for Cancer Therapy - ACS Nano (ACS Publications)  https://pubs.acs.org/doi/abs/10.1021/acsnano.5b04501

A Near-Infrared Triggered Nanophotosensitizer Inducing Domino Effect on Mitochondrial Reactive Oxygen Species Burst for Cancer Therapy

Zhengze Yu, Qiaoqiao Sun, Wei Pan, Na Li*, and Bo Tang*

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China

ACS Nano, 2015, 9 (11), pp 11064–11074

DOI: 10.1021/acsnano.5b04501

Publication Date (Web): October 12, 2015

Copyright © 2015 American Chemical Society

Photodynamic therapy (PDT) is a well-established modality for cancer therapy, which locally kills cancer cells when light irradiates a photosensitizer. However, conventional PDT is often limited by the extremely short lifespan and severely limited diffusion distance of reactive oxygen species (ROS) generated by photosensitizer, as well as the penetration depth of visible light activation. Here, we develop a near-infrared (NIR) triggered nanophotosensitizer based on mitochondria targeted titanium dioxide-coated upconversion nanoparticles for PDT against cancer. When irradiated by NIR laser, the nanophotosensitizer could produce ROS in mitochondria, which induced the domino effect on ROS burst. The overproduced ROS accumulated in mitochondria, resulting in mitochondrial collapse and irreversible cell apoptosis. Confocal fluorescence imaging indicated that the mitochondrial targeting and real-time imaging of ROS burst could be achieved in living cells. The complete removal of tumor in vivo confirmed the excellent therapeutic effect of the nanophotosensitizer.